Insulin prevents mitochondrial generation of H2O2 in rat brain
نویسندگان
چکیده
The mitochondrial electron transport system (ETS) is a main source of cellular ROS, including hydrogen peroxide (H₂O₂). The production of H₂O₂ also involves the mitochondrial membrane potential (ΔΨm) and oxygen consumption. Impaired insulin signaling causes oxidative neuronal damage and places the brain at risk of neurodegeneration. We evaluated whether insulin signaling cross-talks with ETS components (complexes I and F₀F₁ATP synthase) and ΔΨm to regulate mitochondrial H₂O₂ production, in tissue preparations from rat brain. Insulin (50 to 100 ng/mL) decreased H₂O₂ production in synaptosomal preparations in high Na(+) buffer (polarized state), stimulated by glucose and pyruvate, without affecting the oxygen consumption. In addition, insulin (10 to 100 ng/mL) decreased H₂O₂ production induced by succinate in synaptosomes in high K(+) (depolarized state), whereas wortmannin and LY290042, inhibitors of the PI3K pathway, reversed this effect; heated insulin had no effect. Insulin decreased H₂O₂ production when complexes I and F₀F₁ATP synthase were inhibited by rotenone and oligomycin respectively suggesting a target effect on complex III. Also, insulin prevented the generation of maximum level of ∆Ψm induced by succinate. The PI3K inhibitors and heated insulin maintained the maximum level of ∆Ψm induced by succinate in synaptosomes in a depolarized state. Similarly, insulin decreased ROS production in neuronal cultures. In mitochondrial preparations, insulin neither modulated H2O2 production or oxygen consumption. In conclusion, the normal downstream insulin receptor signaling is necessary to regulate complex III of ETS avoiding the generation of maximal ∆Ψm and increased mitochondrial H2O2 production.
منابع مشابه
Crocin Prevents Sub-Cellular Organelle Damage, Proteolysis and Apoptosis in Rat Hepatocytes: A Justification for Its Hepatoprotection
Crocin, the main constituent of saffron (Crocus sativus L.), is a natural carotenoid which is known for its antioxidant activity. Liver as the organ that metabolizes many chemicals is one of the first position that is at risk of environmental pollutants. It is clear that compounds that exhibit antioxidant properties, scavenging of free radicals and inhibition of lipid peroxidation are expected ...
متن کاملCrocin Prevents Sub-Cellular Organelle Damage, Proteolysis and Apoptosis in Rat Hepatocytes: A Justification for Its Hepatoprotection
Crocin, the main constituent of saffron (Crocus sativus L.), is a natural carotenoid which is known for its antioxidant activity. Liver as the organ that metabolizes many chemicals is one of the first position that is at risk of environmental pollutants. It is clear that compounds that exhibit antioxidant properties, scavenging of free radicals and inhibition of lipid peroxidation are expected ...
متن کاملMitochondrial H2O2 as an enable signal for triggering autophosphorylation of insulin receptor in neurons
BACKGROUND Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. ...
متن کاملRegulation of hydrogen peroxide production by brain mitochondria by calcium and Bax.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial R...
متن کاملEvidences for a new cation channel in the brain mitochondrial inner membrane
Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental Neurology
دوره 247 شماره
صفحات -
تاریخ انتشار 2013